INORGANIC CHEMISTRY ## DPP No. 24 Total Marks: 28 Max. Time: 30 min. **Topic: Chemical Bonding** | Type of Questions | | M.M., Min. | |--|-------------------|------------| | Single choice Objective ('-1' negative marking) Q.1 to Q.4 | (3 marks, 3 min.) | [12, 12] | | Multiple choice objective ('-1' negative marking) Q.5 to Q.6 | (4 marks, 4 min.) | [8, 8] | | Subjective Questions ('-1' negative marking) Q.7 to Q.8 | (4 marks, 5 min.) | [8, 10] | - 1. Among the following compounds the one that is polar and has central atom with sp³ hybridisation is - (A) H₂CO₃ - (B) SiF₄ - (C) BF₃ - (D) HCIO₂ - 2. Which of the following compounds are electron deficient? - (A) B_2H_6 - (B) BF₄- - (C) BeCl₂(s) - (D) Al₂Cl₆ - 3. Identify incorrect order of bond angles - (A) $CI_2O > F_2O$ and $F_2O < H_2O$ - (B) $Asl_3 > AsBr_3 > AsCl_3$ - (C) $NO_2^+ > NO_2^-$ - (D) $H_b \hat{B} H_b > H_t \hat{B} H_t$; where H_t is terminal Hydrogen of $B_2 H_6$ and H_b is the bridging Hydrogen of $B_2 H_6$ - 4. Statement-1: LiCl is predominantly a covalent compound. Statement-2: Electronegativity difference between Li and Cl is too small. - (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. - (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 - (C) Statement-1 is True, Statement-2 is False - (D) Statement-1 is False, Statement-2 is True - **5.*** The correct set/s of order is/are - (A) LiCI < BeCl₂ < BCl₃ < CCl₄ (Covalent character) - (B) $Be(OH)_2 < Mg(OH)_2 < Ca(OH)_2 < Sr(OH)_2 < Ba(OH)_2$ (water solubility) - (C) $XeF_4 < H_2O < NH_3 < BF_3$ (bond angle) - (D) $sp^3 < sp^2 < sp$ (% s-character) - **6.*** On the basis of MOT which is **correct**: - (A) The bond order for C_2 molecule is two and both bonds are π -bonds - (B) The LUMO in this molecule is σ 2p anti bonding type of molecular orbital - (C) The HOMO in this molecule are π type of antibonding molecular orbital containing total 4 electrons - (D) None of the above is correct - ICl₃ is an orange colored solid that dimerizes in solid state as I₂Cl₆. Based on VSEPR theory, number of 90 degree CI I CI bond angles is in the dimeric species. Neglect any minor deviations from ideal bond angle. **8.** Sum of antibonding π electrons (π^* electrons) in species O_2 , O_2^- and O_2^{2-} are . ## **Answer Key** **DPP No. #24** 1. (D) 2. (A) 3. (D) 4. (C) 5.* (ABCD) 6.* (AB) 7. 8 8. 9 ## **Hints & Solutions** **DPP No. #24** - 1. H—O—CI: ; CI is sp³ and molecule is polar CI , sp³ संकरित है और अणु ध्रुवीय है - 6.* Electronic configuration of C, molecule will be $$\sigma_{1s^2}$$, $\sigma_{1s^2}^\star$, $\sigma_{2s^2}^\star$, $\sigma_{2s^2}^\star$, $\pi_{2P_x^2}$, $\pi_{2P_y^2}^{}$, $\sigma_{2P_z}^{}$, so, B.O. = 2 (both bonds are π bonds) LUMO = σ_{2P} HOMO = π_{2P} 7. 08 I₂Cl₆ is a planar molecule. 8. Species Number of π^* electrons O₂ O₂- Total = 9 electrons 2